Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique l'architecture complète des Transformateurs et le mécanisme d'auto-attention, en soulignant le changement de paradigme vers l'utilisation de modèles complètement préformés.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.
Explore les modèles de résolution de coréférence, les défis dans les échelles de notation, les techniques de raffinement des graphiques, les résultats de pointe et l'impact des transformateurs préentraînés.
Explore les modèles de séquence à séquence avec BART et T5, en discutant de l'apprentissage du transfert, du réglage fin, des architectures de modèles, des tâches, de la comparaison des performances, des résultats de synthèse et des références.
Explore les stratégies de formation pour les Transformateurs dans le PNL et Vision, en mettant l'accent sur les progrès rapides et les défis dans les modèles d'échelle.