Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Couvre la simulation de la dynamique moléculaire de l'argon liquide à l'aide du potentiel de Lennard-Jones et se concentre sur l'équilibre et la distribution des vitesses à l'équilibre.
Couvre les simulations à gros grains, y compris les avantages, les schémas, l'algorithme DPD, le gros grain de la membrane lipidique et les paramètres d'interaction de réglage.