Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore les approches fondées sur les données pour améliorer la conception des robots, en mettant l'accent sur la conformité, les matériaux souples et les interactions complexes.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.
Explore le contrôle conforme pour les robots par impédance et rigidité variable, permettant des interactions sûres et adaptatives avec l'environnement.
Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.