Plonge dans la dynamique des réseaux sociaux et d'information, y compris le comportement de troupeau, les cascades d'informations, l'attachement préférentiel et le paradoxe de l'amitié.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.
Explore l'inférence pour les processus stochastiques, en mettant l'accent sur l'analyse des grands réseaux et la nécessité de nouvelles théories et méthodes.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.