Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.