Explore la programmation dynamique du problème Knapsack, en discutant des stratégies, des algorithmes, de la dureté du NP et de l'analyse de la complexité temporelle.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Plonge dans la malédiction de la dimensionnalité en optimisation discrète, mettant en évidence les défis de la croissance exponentielle du temps de calcul avec la taille du problème.
Couvre le sous-graphe le plus sparsest et le sous-graphe le plus Densest, en mettant l'accent sur les algorithmes de regroupement et d'approximation de corrélation.
Explore l'optimisation de la programmation linéaire avec des contraintes, l'algorithme de Dijkstra et les formulations LP pour trouver des solutions réalisables.
Couvre les mécanismes d'attention subquadratiques et les modèles d'espace d'état, en se concentrant sur leurs fondements théoriques et leurs implémentations pratiques dans l'apprentissage automatique.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.