Couvre les fondamentaux et les algorithmes du classement basé sur les liens, y compris l'indexation de texte d'ancrage, PageRank, HITS, et les implémentations pratiques.
Explore les transformateurs et les MLP pour la classification des documents, en mettant l'accent sur leurs avantages par rapport aux méthodes traditionnelles.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.