Explore les modèles additifs généralisés, couvrant les bases, les fonctions lisses, les pénalités, les exemples pratiques en R, et les modèles mixtes linéaires.
Couvre la théorie et les applications des modèles linéaires généralisés, y compris le MLE, les mesures d'ajustement, le rétrécissement et des exemples spéciaux.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Explore la vérification du modèle et les résidus dans lanalyse de régression, en soulignant limportance des diagnostics pour assurer la validité du modèle.