S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.
Explore l'échantillonnage dans les statistiques inférentielles, en mettant l'accent sur l'impact de la taille de l'échantillon et du caractère aléatoire sur la précision de l'inférence.
Couvre la probabilité maximale d'estimation dans l'inférence statistique, en discutant des propriétés MLE, des exemples et de l'unicité dans les familles exponentielles.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.