Méthodes de décomposition et de régression des erreurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'estimation, le rétrécissement et la pénalisation des statistiques pour la science des données, soulignant l'importance d'équilibrer le biais et la variance dans l'estimation des modèles.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Explore la convergence de la descente du gradient pour les fonctions fortement convexes et l'importance de la régularisation dans la prévention des surajustements.
Couvre les variables instrumentales, abordant les problèmes d'endogénéité dans l'analyse de régression à travers des techniques d'estimation et des exemples pratiques.
Couvre la divergence Kullback-Leibler, la régularisation et les statistiques bayésiennes pour lutter contre le surajustement dans les modèles d'apprentissage automatique.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.