Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore l'inférence semi-paramétrique pour les données manquantes et non aléatoires, en abordant les défis de l'analyse statistique et en proposant un estimateur double-robuste.
Explore le raisonnement causal dans les soins de santé, les lignes directrices ML, les changements d'ensemble de données, l'impact des biais et l'apprentissage multimodal.