Compression du modèle: Techniques pour des modèles NLP efficaces
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la conversion analogique-numérique, l'optimisation du signal neuronal, les architectures multicanaux et les techniques de compression sur puce en neuroingénierie.
Explore la compression du modèle de deuxième ordre pour les réseaux neuronaux profonds massifs, montrant les techniques de compression et leur impact sur la précision du modèle.
Explore les principes de compression d'images, en se concentrant sur JPEG 2000, couvrant le codage basé sur la transformation, la quantification, le codage entropie, la région d'intérêt, la résilience aux erreurs et les implémentations logicielles.
Explore la compression d'image à travers diverses approches telles que la compression de pixel et de niveau de bloc, Discret Cosine Transform, quantification et codage entropie.
Explore l'encodage MP3, en mettant l'accent sur la réduction des bits par compression perdue et en utilisant des modèles psycho-acoustiques pour un filtrage et une quantification efficaces.
Explore les avantages prouvables d'une surparamétrie dans la compression des modèles, en mettant l'accent sur l'efficacité des réseaux neuronaux profonds et sur l'importance du recyclage pour améliorer les performances.