Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'histoire et les concepts fondamentaux des réseaux neuronaux, y compris le modèle mathématique d'un neurone, la descente de gradient et le perceptron multicouche.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore l'optimisation des réseaux neuronaux en utilisant la descente de gradient stochastique (SGD) et le concept de risque double par rapport au risque empirique.