Couvre des sujets tels que la sortie DFS, la classification des bords, les graphes acycliques, l'exactitude, l'analyse du temps, les SCC et l'algorithme de tri topologique.
Couvre les tests d'identité polynomiale à l'aide d'oracles et d'évaluations ponctuelles aléatoires, avec des applications dans la théorie des graphes et les aspects algorithmiques.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.