Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre les bases de la conception et de l'analyse expérimentales, en mettant l'accent sur les techniques statistiques comme l'ANOVA, la régression, la médiation et la modération.
Explore le processus de réfutation de la séance de cours académique, en mettant l'accent sur l'analyse des données pour l'acceptation du papier, l'apprentissage automatique et les tests statistiques.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.