Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Théorie de la relativitévignette|Formule de la théorie de la relativité d'Albert Einstein. L'expression théorie de la relativité renvoie le plus souvent à deux théories complémentaires élaborées par Albert Einstein et Mileva Marić : la relativité restreinte (1905) et la relativité générale (1915). Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne, qui s'applique à la mécanique newtonienne. En 1905, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité.
CofibrationEn mathématiques, une cofibration est une application qui satisfait la propriété d'extension des homotopies, ce qui est le cas pour les inclusions de CW-complexes. Le quotient de l'espace but par l'espace source est alors appelé cofibre de l'application. L'inclusion dans le cylindre d'application permet de remplacer une application continue entre deux espaces topologiques par une cofibration homotopiquement équivalente. La cofibre est alors appelée cofibre homotopique de l'application initiale.
ThéorieUne théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclure des lois et des hypothèses, induites par l'accumulation de faits provenant de l'observation, l'expérimentation ou, dans le cas des mathématiques, déduites d'une base axiomatique donnée : théorie des matrices, des torseurs, des probabilités.
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.