Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur le choix d'une taille de caractéristique appropriée pour l'analyse d'images dans les sciences de la vie, présentant une règle de pouce pour définir la taille de l'objet en pixels.
Couvre le bac à sable de la réalité augmentée, explorant les équipements de détection de profondeur, les dichotomies, les scripts Python pour les interactions 3D et les méthodes de mesure des performances matérielles.
Couvre les techniques de traitement de l'image, y compris l'ajout de bruit, le filtrage et l'amélioration de l'image à l'aide de divers filtres et outils.
Introduit des bases de traitement d'image en Python, couvrant la manipulation, la conversion à l'échelle grise, la détection des bords et la convolution avec les noyaux.
Couvre les bases de l'acquisition d'images, y compris les dispositifs optiques, les facteurs de résolution, les distorsions de la lentille et les technologies de capteur.
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Explore les transformateurs en intelligence visuelle, en se concentrant sur la détection d'objets, la synthèse d'images et la fusion de fonctionnalités.