Régression des crêtes : les moindres carrés pénalisés
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le compromis entre les variables de biais dans l'estimation des crêtes, montrant comment un peu de biais peut augmenter l'erreur carrée moyenne en réduisant la variance.
Explore les modèles linéaires et quadratiques de Scheffé en mélangeant des plans et des schémas ternaires, en mettant l'accent sur les contraintes et les représentations.
Explore Kernel Ridge Regression, le Kernel Trick, Représenter Theorem, dispose d'espaces, matrice du noyau, prédiction avec les noyaux, et la construction de nouveaux noyaux.
Explore la régression multilinéaire pour l'optimisation de la conception et l'orthogonalité, couvrant le travail d'équipe, les résumés, les modèles linéaires et quadratiques, ANOVA et les structures d'alias.