Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Explore des méthodes robustes et résistantes dans des modèles linéaires, en soulignant l'importance de gérer les observations extrêmes et les implications de la robustesse dans les modèles de régression.
Explore la sélection de modèles imbriqués dans des modèles linéaires, en comparant les modèles à travers des sommes de carrés et ANOVA, avec des exemples pratiques.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.