Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Explore le parcours de Valérie de la science à l'ingénierie environnementale à l'EPFL, en se concentrant sur les défis environnementaux actuels et les projets avancés dans le traitement des données et l'intelligence artificielle.
Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.
Explore le rôle de l'unité Alice de l'EPFL dans l'apprentissage automatique et l'IA en Europe, en mettant l'accent sur les progrès de la recherche et la collaboration au sein de la communauté de l'IA.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore les principes fondamentaux de la recherche scientifique, de l'impact des ordinateurs, des algorithmes numériques et de l'apprentissage profond dans la résolution de problèmes de haute dimension.