Explore les équations différentielles ordinaires, les méthodes de preuve et les exemples historiques d'Euclid, en mettant l'accent sur le raisonnement logique et les dérivations étape par étape.
Introduit le Mathgraph Theorem Prover, montrant son approche unique pour représenter des propositions et organiser des graphiques pour la logique de premier ordre.
Explore l'exhaustivité dans la logique propositionnelle, la résolution sur les clauses, la forme conjonctive, la résolution unitaire, les solveurs SAT et la génération de preuves.