Fournit une analyse approfondie du modèle d'Ising de champ aléatoire, couvrant la description du modèle, l'entropie libre et l'algorithme de champ moyen.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.