Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Cette séance de cours couvre l'inférence statistique pour les données sur le banditisme, en mettant l'accent sur les actions de traitement personnalisées dans les études de prise de décisions séquentielles. Il traite des problèmes de banditisme contextuels, de la pondération adaptative dans les moindres carrés et des défis des estimateurs standard sur les données de banditisme. L'instructeur présente des simulations avec des récompenses continues et binaires, des régions de confiance et le rôle des poids adaptatifs. La séance de cours se termine par une discussion sur le modèle de mauvaise spécification, l'inférence causale et la minimisation des regrets. Le contenu est basé sur l'article de Kelly Wang Zhang, Lucas Janson, et Susan Murphy, présenté au NeurIPS 2021, intitulé «Inférence statistique avec M-Estimators sur les données recueillies adaptativement».