Explore l'utilisation d'interconnexions rapides pour le co-traitement évolutif avec les GPU dans les bases de données, soulignant l'importance de surmonter le goulot d'étranglement du transfert et de réévaluer les hypothèses d'amélioration des performances.
Explore le parallélisme dans la programmation, en mettant l'accent sur les compromis entre la programmabilité et la performance, et introduit la programmation parallèle en mémoire partagée à l'aide d'OpenMP.
Couvre l'évolution et les défis des multiprocesseurs, en mettant l'accent sur l'efficacité énergétique, la programmation parallèle, la cohérence du cache et le rôle des GPU.
Couvre l'architecture multiprocesseurs, l'informatique durable, l'impact de la formation sur les modèles d'IA et les principes fondamentaux de la programmation parallèle.
Explore l'architecture des GPU, la programmation CUDA, le traitement d'image et leur importance dans l'informatique moderne, en mettant l'accent sur le démarrage précoce et l'exactitude de la programmation GPU.
Explore la motivation et les avantages de l'utilisation des GPU pour le calcul, en se concentrant sur leurs performances et leur programmation via CUDA.