Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les courbes de double descente et la surparamétrisation dans les modèles d'apprentissage automatique, en soulignant les risques et les avantages.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.
Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.