Réseaux profonds et convolutifs : généralisation et optimisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Explore l'application de modèles générateurs profonds dans la découverte de médicaments, en mettant l'accent sur la conception de petites molécules et l'optimisation des structures moléculaires.
Déplacez-vous dans la construction d'ensembles robustes grâce à l'augmentation de la marge pour améliorer la défense contradictoire dans les modèles d'apprentissage automatique.
Couvre l'optimisation non convexe, les problèmes d'apprentissage profond, la descente stochastique des gradients, les méthodes d'adaptation et les architectures réseau neuronales.
Explore l'optimisation décentralisée dans l'apprentissage automatique, en mettant l'accent sur la robustesse, la confidentialité et l'équité dans l'apprentissage collaboratif.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.
Explore les astuces stochastiques softmax, la reparamétrisation et l'argmax, en abordant les défis dans l'estimation des attentes et la variance des gradients.
Explore l'optimisation adaptative efficace dans la mémoire pour l'apprentissage à grande échelle et les défis de la mémoire dans la formation de grands modèles.