Explore les fonctions de transfert, les algorithmes de contrôle et les transformations du système dans des systèmes discrets et analogiques, avec des exercices pratiques inclus.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.
Couvre l'algorithme Metropolis-Hastings et le diagnostic de convergence dans la simulation stochastique, en se concentrant sur l'échantillonnage et la génération de propositions.