Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Explore l'ajustement de la courbe polynomiale, les fonctions du noyau et les techniques de régularisation, en soulignant l'importance de la complexité du modèle et du surajustement.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.