Séance de cours

Méthode à point fixe: Convergence et linéarité

Description

Cette séance de cours conclut l'étude de la méthode du point fixe, axée sur la convergence et la linéarité du processus itératif. L'instructeur explique les conditions dans lesquelles la méthode converge linéairement, fournissant des idées théoriques et des démonstrations mathématiques.

Dans MOOCs (4)
Analyse Numérique pour Ingénieurs
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Analyse numérique pour ingénieurs
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Analyse Numérique
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Analyse Numérique pour Ingénieurs [retired]
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Enseignant
enim ea
Aute anim culpa ipsum consectetur est duis proident culpa eiusmod. Pariatur minim qui excepteur esse aliquip do veniam Lorem nisi esse irure. Mollit exercitation velit nostrud sunt aliqua sit quis reprehenderit fugiat.
Connectez-vous pour voir cette section
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (31)
Analyse numérique : Équations non linéaires
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.
Méthode Picard: Technique itérative à point fixe
Couvre la méthode Picard pour résoudre des équations non linéaires en utilisant l'itération à point fixe.
Analyse numérique : la méthode de Newton
Explore la méthode de Newton pour trouver les racines des équations non linéaires et son interprétation comme méthode de second ordre.
Équations non linéaires : Convergence de la méthode des points fixes
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Méthodes d'ordre supérieur: Techniques itératives
Couvre les méthodes d'ordre supérieur pour résoudre les équations itérativement, y compris les méthodes de points fixes et la méthode de Newton.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.