Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.
Explore la descente progressive stochastique avec la moyenne, la comparant avec la descente progressive, et discute des défis dans l'optimisation non convexe et les techniques de récupération clairsemées.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.