Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre les méthodes pour définir la tempête de conception, la distribution empirique des maxima de pluie, la distribution de Gumbel, et les relations intensité-durée-fréquence.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explore les informations mutuelles pour quantifier la dépendance statistique entre les variables et déduire des distributions de probabilité à partir de données.
Couvre l'estimation de la vraisemblance maximale pour estimer les paramètres en maximisant la précision de la prédiction, en démontrant par un exemple simple et en discutant de la validité par le biais de tests d'hypothèses.