Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
S'insère dans la dynamique de l'apprentissage collectif avec exploitation de la similitude, couvrant l'apprentissage structuré, les cadres d'adaptation, la modélisation, la simulation et les résultats expérimentaux.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.