Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Couvre les produits scalaires, les vecteurs orthogonaux, les normes et les projections dans les espaces vectoriels, en mettant l'accent sur les familles orthonormales de vecteurs.
Présente les espaces fonctionnels et les espaces de Hilbert, en discutant des espaces de produits intérieurs et de l'importance de l'exhaustivité dans les espaces de Hilbert.