Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.