Explore les techniques de visualisation des données, l'impact de la conception et les applications interactives pour une communication efficace de l'information.
Introduit Renku, une plateforme pour la science collaborative des données, mettant l'accent sur la reproductibilité, la shareability, la réutilisabilité et la sécurité.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore la morphologie urbaine, les systèmes urbains auto-organisés, les défis à relever pour réaliser le concept (urban) Digital Twin, les contributions d'analyse spatiale du LASIG et l'enseignement de la géomatique.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.