Se penche sur les compromis de confidentialité différentielle, l'impact disparate et les attaques de confidentialité basées sur l'apprentissage automatique.
Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Examine les défis liés à la protection de la vie privée dans les lieux et les diverses techniques permettant d'atténuer les inférences liées aux lieux, en soulignant l'importance des hypothèses de confiance et des questions pratiques.
Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.
Explore les méthodes de suivi en ligne, y compris la toile et les empreintes de l'API AudioContext, et leurs implications en matière de protection de la vie privée.
Explore les principes différentiels de protection de la vie privée et de protection de la vie privée par la conception afin d'assurer une protection de la vie privée centrée sur l'utilisateur.
Introduit le Mécanisme de graduation K-Norm (KNG) pour obtenir une protection de la vie privée différentielle avec des exemples pratiques et des idées sur ses avantages par rapport aux mécanismes existants.
Explore les principes de confidentialité par conception, la minimisation des données, la minimisation de la confiance et l'étude de cas de l'application SwissCovid.