Séance de cours

Les classificateurs ImageNet se généralisent-ils?

Description

Cette séance de cours explore la généralisation des classificateurs ImageNet, analyse les progrès réalisés au cours de la dernière décennie, les applications critiques pour la sécurité de l'apprentissage automatique et les implications pour l'évaluation des modèles d'apprentissage automatique. Il s'inscrit dans le processus de création d'ImageNet, les trois formes de surajustement, et la fiabilité des modèles d'apprentissage automatique actuels. La séance de cours traite également de l'absence d'ajustement excessif dans les ensembles de données CIFAR-10 et ImageNet, du spectre de robustesse et des travaux futurs nécessaires pour améliorer la robustesse dans l'apprentissage automatique. Diverses expériences et évaluations sont présentées, mettant en lumière les défis et les opportunités dans le domaine de l'apprentissage automatique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.