Explore l'analyse des mesures, la réconciliation des données et l'identification des paramètres dans les systèmes énergétiques, en soulignant l'importance de mesures et d'optimisations correctes.
Couvre la chaîne Markov Monte Carlo pour l'échantillonnage des distributions haute dimension, en discutant des défis, des avantages et des applications comme le problème Knapsack et la cryptographie.
Discute de l'optimisation par rapport à la simulation dans l'ingénierie des systèmes énergétiques, les réseaux de chauffage urbain et les directives d'écriture scientifique.
Couvre l'algorithme Metropolis-Hastings et les approches basées sur les gradients pour biaiser les recherches vers des valeurs de vraisemblance plus élevées.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.