Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des méthodes de pointe dans l'optimisation et la simulation, couvrant des sujets tels que l'analyse statistique, la réduction de la variance et les projets de simulation.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Explore l'analyse des mesures, la réconciliation des données et l'identification des paramètres dans les systèmes énergétiques, en soulignant l'importance de mesures et d'optimisations correctes.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Explore l'analyse des grappes bayésiennes, la simulation des métriques des grappes et les métriques d'évaluation en microscopie de localisation d'une molécule.
Discute de l'optimisation par rapport à la simulation dans l'ingénierie des systèmes énergétiques, les réseaux de chauffage urbain et les directives d'écriture scientifique.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.