L'apprentissage automatique des droits de l'homme : études de cas et considérations
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les aspects juridiques et éthiques du corps humain, des parties détachées et du prélèvement d'organes, y compris les implications en matière de propriété et de recherche.
Explore les défis de l'apprentissage profond et des applications d'apprentissage automatique, couvrant la surveillance, la confidentialité, la manipulation, l'équité, l'interprétabilité, l'efficacité énergétique, les coûts et la généralisation.
Explore les technologies de protection de la vie privée, la protection des données, les risques de surveillance et les technologies d'amélioration de la vie privée pour la vie privée sociale et institutionnelle.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.
Explore l'intersection de l'apprentissage automatique et de la vie privée, en discutant de la confidentialité, des attaques, de la vie privée différentielle et des compromis dans l'apprentissage fédéré.
Explore la sécurité de l'apprentissage automatique, y compris le vol de modèles, la modification des extrants, les conditions conflictuelles et les défis liés à la protection de la vie privée, soulignant l'importance de corriger les biais dans les modèles d'apprentissage automatique.
Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.