Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.
Explique les grilles de différence finie pour calculer les solutions de membranes élastiques à l'aide de l'équation et des méthodes numériques de Laplace.
Explore la modélisation des éléments finis en mécanique structurale, couvrant la convergence, le déplacement non linéaire et les lois d'échelle dans les micro et nanosystèmes.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.