Couvre les propriétés et la construction des processus de Poisson à partir de variables aléatoires d'i.i.d. Exp(X), en soulignant l'importance du taux de processus et des distributions de temps de saut.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre les outils mathématiques pour les systèmes de communication et la science des données, y compris la théorie de l'information et le traitement des signaux.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.