Entier quadratiqueEn mathématiques, un entier quadratique est un nombre complexe, racine d'un polynôme unitaire du second degré à coefficients entiers. La notion de nombre algébrique de degré inférieur ou égal à 2 est plus générale : elle correspond à un nombre complexe, racine d'un polynôme du second degré à coefficients seulement rationnels. Ces nombres particuliers disposent de propriétés algébriques.
Entier d'Eisensteinthumb|Les entiers d'Eisenstein sont les points d'intersection d'un treillis triangulaire dans le plan complexe. En mathématiques, les 'entiers d'Eisenstein', nommés en l'honneur du mathématicien Gotthold Eisenstein, sont les nombres complexes de la forme où a et b sont des entiers relatifs et est une racine cubique primitive de l'unité (souvent autrement notée j). Les entiers d'Eisenstein forment un réseau triangulaire dans le plan complexe. Ils contrastent avec les entiers de Gauss qui forment un réseau carré dans le plan complexe.
Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
Nombres premiers entre euxvignette|Le segment ne passe par aucun point du réseau (hormis les points à ses extrémités), ce qui montre que 4 et 9 sont premiers entre eux. En mathématiques, on dit que deux entiers a et b sont premiers entre eux, que a est premier avec b ou premier à b ou encore que a et b sont copremiers (ou encore étrangers) si leur plus grand commun diviseur est égal à 1 ; en d'autres termes, s'ils n'ont aucun diviseur autre que 1 et –1 en commun. De manière équivalente, ils sont premiers entre eux s'ils n'ont aucun facteur premier en commun.
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.