vignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire.
L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Quand les scientifiques ont voulu énoncer formellement et rigoureusement ce qu'est l'efficacité d'un algorithme ou au contraire sa complexité, ils se sont rendu compte que la comparaison des algorithmes entre eux était nécessaire et que les outils pour le faire à l'époque étaient primitifs. Dans la préhistoire de l'informatique (les années 1950), la mesure publiée, si elle existait, était souvent dépendante du processeur utilisé, des temps d'accès à la mémoire vive et de masse, du langage de programmation et du compilateur utilisé.
Une approche indépendante des facteurs matériels était donc nécessaire pour évaluer l'efficacité des algorithmes. Donald Knuth fut un des premiers à l'appliquer systématiquement dès les premiers volumes de sa série The Art of Computer Programming. Il complétait cette analyse de considérations propres à la théorie de l'information : celle-ci par exemple, combinée à la formule de Stirling, montre que, dans le pire des cas, il n'est pas possible d'effectuer, sur un ordinateur classique, un tri général (c'est-à-dire uniquement par comparaisons) de N éléments en un temps croissant avec N moins rapidement que N ln N.
L'approche la plus classique est donc de calculer le temps de calcul dans le pire des cas.
Il existe au moins trois alternatives à l'analyse de la complexité dans le pire des cas. La complexité en moyenne des algorithmes, à partir d'une répartition probabiliste des tailles de données, tente d'évaluer le temps moyen que l'on peut attendre de l'évaluation d'un algorithme sur une donnée d'une certaine taille.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Graphique montrant le logarithme itéré En informatique, le logarithme itéré d'un nombre n, noté (lu "log star" ou "log étoile"), est le nombre de fois que le logarithme doit lui être appliqué avant que le résultat soit inférieur ou égal à 1. Cette fonction est utilisée pour décrire la complexité de certains algorithmes, notamment en algorithmique distribuée. Le logarithme itéré de base b peut être défini par : Sur les nombres réels positifs, le continu (l'inverse de la tétration) est essentiellement équivalente : Le tableau suivant donne les valeurs du logarithme itéré (en base 2) : Cette fonction croît extrêmement lentement.
Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory. A primary concern of algorithmic topology, as its name suggests, is to develop efficient algorithms for solving problems that arise naturally in fields such as computational geometry, graphics, robotics, structural biology and chemistry, using methods from computable topology.
thumb|300px|Animation montrant le fonctionnement du tri par tas (Heapsort). En informatique, le tri par tas est un algorithme de tri par comparaisons. Cet algorithme est de complexité asymptotiquement optimale, c'est-à-dire que l'on démontre qu'aucun algorithme de tri par comparaison ne peut avoir de complexité asymptotiquement meilleure. Sa complexité est proportionnelle à où est la longueur du tableau à trier.
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
In urban air mobility (UAM) networks, takeoff and landing sites, called vertiports, are likely to experience intermittent closures due to, e.g., adverse weather. To ensure safety, all in-flight urban air vehicles (UAVs) in a UAM network must therefore have ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Amer Chemical Soc2024
, ,
Droplet microfluidics has revolutionized quantitative high-throughput bioassays and screening, especially in the field of single-cell analysis where applications include cell characterization, antibody discovery and directed evolution. However, droplet mic ...
En informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
En programmation informatique, un langage de programmation à haut niveau d'abstraction généralement appelé langage de haut niveau est un langage de programmation orienté autour du problème à résoudre, qui permet d'écrire des programmes en utilisant des mots usuels des langues naturelles (très souvent de l'anglais) et des symboles mathématiques familiers. Un langage de haut niveau fait abstraction des caractéristiques techniques du matériel utilisé pour exécuter le programme, tels que les registres et les drapeaux du processeur.