Introduit les types de variables, la distribution multinomiale, les caractéristiques des données, les formes des densités, la corrélation et les méthodes de visualisation des données.
Introduit un cours sur l'apprentissage automatique des données comportementales à l'EPFL, couvrant les algorithmes ML, le traitement des données et l'évaluation des modèles.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Se penche sur l'impact de l'apprentissage automatique sur la vie privée, en discutant des attaques, des vulnérabilités et des considérations éthiques dans l'utilisation des données.
Couvre les moindres carrés pondérés itératifs, la vérification du modèle, la régression de Poisson et lajustement des modèles multinomiels en utilisant les erreurs de Poisson.
Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.
Présente une description de projet pour la construction de chatbots éducatifs à l'aide de modèles de type ChatGPT, décrivant les étapes, les politiques et le partage de données à des fins de recherche.