Explore les équations non linéaires, la bisection, les méthodes de points fixes, le contrôle des erreurs et les interprétations graphiques des points fixes.
Couvre les fonctions d'intégration sur les surfaces des graphes dans le calcul vectoriel, en mettant l'accent sur l'interprétation du théorème de divergence et des cas spéciaux de domaine entre deux graphes.
Explore les surfaces fermées et non fermées, le théorème de divergence, le théorème de Stokes et les propriétés des fluides en dynamique des fluides et en électromagnétisme.