Explore les défis d'apprentissage en renforcement continu de l'état, l'estimation de la fonction de valeur, les gradients des politiques et l'apprentissage des politiques par l'exploration pondérée.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Fournit une vue d'ensemble de l'apprentissage par renforcement, en se concentrant sur le gradient de politique et les méthodes critiques des acteurs pour les réseaux de neurones artificiels profonds.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.