Couvre l'introduction et les défis des entrepôts de données, y compris l'intégration des données, la gestion des métadonnées et l'optimisation des performances des requêtes.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Couvre l'utilisation pratique de QGIS pour l'analyse et la visualisation des données spatiales, y compris le géoréférencement des cartes historiques et la manipulation des données vectorielles.
Présentation d'Apache Spark, couvrant son architecture, ses RDD, ses transformations, ses actions, sa tolérance aux pannes, ses options de déploiement et ses exercices pratiques dans les blocs-notes Jupyter.
Explore les techniques de visualisation des données, l'impact de la conception et les applications interactives pour une communication efficace de l'information.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Introduit LabVIEW pour le traitement et la visualisation des données, couvrant des sujets tels que la synchronisation des formes d'onde et les tables de recherche couleur.