Couvre les principes fondamentaux de l'informatique quantique, y compris la réalisation de qubits, les ordinateurs quantiques évolutifs, la communication quantique et les algorithmes quantiques.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Explore les principes fondamentaux et l'histoire de l'informatique quantique, y compris la réalisation de qubits et les première et deuxième révolutions quantiques.
Explore des applications quantiques telles que l'imagerie, l'intrication, l'informatique quantique et la distribution de clés quantiques, ainsi que l'électronique supraconductrice et les détecteurs à photons uniques.
Couvre la naissance de la mécanique quantique, les équations de Schrödinger, la supraconductivité, l'effet Josephson, et la théorie de la supraconductivité.
Introduit le paradigme du calcul quantique numérique, couvrant les qubits, les portes logiques quantiques, la préparation de l'état et la correction des erreurs.
Couvre la relation entre la théorie du champ conforme et la gravité quantique de Liouville, en se concentrant sur les fonctions de corrélation et les implications de la coupe LQG par des boucles SLE.