Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.
Explore les méthodes de gradient adaptatif comme AdaGrad, AcceleGrad et UniXGrad, en se concentrant sur leurs taux d'adaptation et de convergence locaux.
Explore les compromis d'optimisation, la réduction de la variance, la dimension statistique et l'analyse de convergence dans les algorithmes d'optimisation.
Par Quoc Tran-Dinh explore les algorithmes accélérés pour les inclusions monotone, couvrant les modèles d'optimisation, les défis et les nouveaux algorithmes.