Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Se concentre sur l'inférence de la cinétique de réaction dans la combustion, couvrant l'inférence des règles, l'analyse de sensibilité et l'inférence bayésienne.
Explore les codeurs automatiques variables, l'inférence bayésienne, les espaces latents axés sur l'attention et l'efficacité des transformateurs dans le traitement des langues.
Couvre la chaîne Markov Monte Carlo pour l'échantillonnage des distributions haute dimension, en discutant des défis, des avantages et des applications comme le problème Knapsack et la cryptographie.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.